Linear systems - Resit exam (solutions)

Resit exam 2018-2019, Tuesday 9 July 2019, 9:00-12:00

Problem 1

To solve the initial value problem

$$
\begin{equation*}
\dot{x}(t)+\frac{t}{1+t^{2}} x(t)=\left(1+2 t^{2}\right) \sqrt{1+t^{2}}, \quad x(0)=2 \tag{1}
\end{equation*}
$$

consider the differential equation in the standard form

$$
\begin{equation*}
\dot{x}(t)=-\frac{t}{1+t^{2}} x(t)+\left(1+2 t^{2}\right) \sqrt{1+t^{2}} . \tag{2}
\end{equation*}
$$

Then, a direct computation gives

$$
\begin{equation*}
F(t)=-\int \frac{t}{1+t^{2}} \mathrm{~d} t=-\frac{1}{2} \int \frac{1}{1+u} \mathrm{~d} u=-\frac{1}{2} \ln |1+u|=-\frac{1}{2} \ln \left|1+t^{2}\right| \tag{3}
\end{equation*}
$$

where the substitution $u=t^{2}$ is used. After simplifying the result as

$$
\begin{equation*}
F(t)=-\frac{1}{2} \ln \left|1+t^{2}\right|=-\frac{1}{2} \ln \left(1+t^{2}\right)=-\ln \left(\left(1+t^{2}\right)^{\frac{1}{2}}\right)=-\ln \sqrt{1+t^{2}} \tag{4}
\end{equation*}
$$

the integrating factor reads

$$
\begin{equation*}
e^{-F(t)}=e^{\ln \sqrt{1+t^{2}}}=\sqrt{1+t^{2}} \tag{5}
\end{equation*}
$$

Now, we have that

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\{\sqrt{1+t^{2}} x(t)\right\} & =\sqrt{1+t^{2}} \dot{x}(t)+\frac{t}{\sqrt{1+t^{2}}} x(t) \\
& =\sqrt{1+t^{2}}\left(\dot{x}(t)+\frac{t}{1+t^{2}} x(t)\right) \\
& =\left(1+t^{2}\right)\left(1+2 t^{2}\right)=1+3 t^{2}+2 t^{4} \tag{6}
\end{align*}
$$

where the latter result follows from the substitution of the dynamics (2). By direct integration, we obtain

$$
\begin{equation*}
\sqrt{1+t^{2}} x(t)=\int 1+3 t^{2}+2 t^{4} \mathrm{~d} t=t+t^{3}+\frac{2}{5} t^{5}+C \tag{7}
\end{equation*}
$$

for some constant C, such that the general solution of (2) reads

$$
\begin{equation*}
x(t)=\frac{t+t^{3}+\frac{2}{5} t^{5}+C}{\sqrt{1+t^{2}}} . \tag{8}
\end{equation*}
$$

For $t=0$, this gives

$$
\begin{equation*}
x(0)=C, \tag{9}
\end{equation*}
$$

such that the initial condition (1) leads to

$$
\begin{equation*}
C=2 . \tag{10}
\end{equation*}
$$

Problem 2

Consider the nonlinear system

$$
\begin{aligned}
& \dot{x}_{1}(t)=x_{1}(t)-x_{1}(t) x_{2}(t), \\
& \dot{x}_{2}(t)=-x_{1}^{3}(t)+u(t) .
\end{aligned}
$$

(a) We will compute the equilibrium point $\bar{x}=\left[\bar{x}_{1} \bar{x}_{2}\right]^{\mathrm{T}}$ for $\bar{u}=1$. This requires solving the set of equations

$$
\begin{align*}
& 0=\bar{x}_{1}-\bar{x}_{1} \bar{x}_{2}, \tag{11}\\
& 0=-\bar{x}_{1}^{3}+\bar{u} \tag{12}
\end{align*}
$$

for $\bar{u}=1$. From (12), we immediately obtain (recall that only real solutions are considered)

$$
\begin{equation*}
\bar{x}_{1}=1, \tag{13}
\end{equation*}
$$

as the unique solutions. Then, the substitution of (13) in (11) leads to $0=1-\bar{x}_{2}$, such that

$$
\begin{equation*}
\bar{x}_{2}=1, \tag{14}
\end{equation*}
$$

is the unique solution. Hence, the unique equilibrium corresponding to $\bar{u}=1$ reads $\bar{x}=$ $\left[\begin{array}{ll}1 & 1\end{array}\right]^{\mathrm{T}}$.
(b) Before computing the linearized system, introduce the notation

$$
x=\left[\begin{array}{l}
x_{1} \tag{15}\\
x_{2}
\end{array}\right], \quad f(x, u)=\left[\begin{array}{c}
x_{1}-x_{1} x_{2} \\
-x_{1}^{3}+u
\end{array}\right] .
$$

Now, define the perturbations from the equilibrium as

$$
\begin{equation*}
\tilde{x}=x-\bar{x}, \quad \tilde{u}=u-\bar{u}, \tag{16}
\end{equation*}
$$

such that we have

$$
\begin{equation*}
\dot{\tilde{x}}=f(\bar{x}+\tilde{x}, \bar{u}+\tilde{u}) . \tag{17}
\end{equation*}
$$

This leads to the linearized dynamics (by the Taylor expansion)

$$
\begin{equation*}
\dot{\tilde{x}}=\frac{\partial f}{\partial x}(\bar{x}, \bar{u}) \tilde{x}+\frac{\partial f}{\partial u}(\bar{x}, \bar{u}) \tilde{u} . \tag{18}
\end{equation*}
$$

Then, computation of the Jacobian of f with respect to x gives

$$
\frac{\partial f}{\partial x}(x, u)=\left[\begin{array}{cc}
1-x_{2} & -x_{1} \tag{19}\\
-3 x_{1}^{2} & 0
\end{array}\right],
$$

leading to

$$
\frac{\partial f}{\partial x}(\bar{x}, \bar{u})=\left[\begin{array}{cc}
0 & -1 \tag{20}\\
-3 & 0
\end{array}\right] .
$$

Similarly, we obtain

$$
\frac{\partial f}{\partial u}(\bar{x}, \bar{u})=\left[\begin{array}{l}
0 \tag{21}\\
1
\end{array}\right] .
$$

Finally, the substitution of the results (20) and (21) in (18) gives

$$
\dot{\tilde{x}}(t)=\left[\begin{array}{cc}
0 & -1 \tag{22}\\
-3 & 0
\end{array}\right] \tilde{x}(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] \tilde{u}(t) .
$$

Problem 3

Consider the linear system

$$
\dot{x}(t)=A x(t)+B u(t),
$$

with state $x(t) \in \mathbb{R}^{2}$, input $u(t) \in \mathbb{R}$, and where

$$
A=\left[\begin{array}{cc}
-7 & -3 \\
22 & 10
\end{array}\right], \quad B=\left[\begin{array}{c}
-1 \\
3
\end{array}\right]
$$

(a) A direct computation leads to

$$
\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{cc}
-1 & -2 \tag{23}\\
3 & 8
\end{array}\right]
$$

from which one can conclude that

$$
\begin{equation*}
\operatorname{rank}[B A B]=2 \tag{24}
\end{equation*}
$$

Hence, the system is controllable.
(b) As a first step in finding the matrix T, compute

$$
\begin{align*}
\Delta_{A}(\lambda)=\operatorname{det}(\lambda I-A) & =\left|\begin{array}{cc}
\lambda+7 & 3 \\
-22 & \lambda-10
\end{array}\right| \\
& =(\lambda+7)(\lambda-10)+66=\lambda^{2}-3 \lambda-70+66=\lambda^{2}-3 \lambda-4 . \tag{25}
\end{align*}
$$

Define

$$
\begin{equation*}
a_{1}=-3, \quad a_{0}=-4, \tag{26}
\end{equation*}
$$

such that $\Delta_{A}(s)=s^{2}+a_{1} s+a_{0}$.
Next, define the vectors

$$
\begin{align*}
& q_{2}=B=\left[\begin{array}{c}
-1 \\
3
\end{array}\right] \tag{27}\\
& q_{1}=A B+a_{1} B=\left[\begin{array}{c}
-2 \\
8
\end{array}\right]+(-3)\left[\begin{array}{c}
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \tag{28}
\end{align*}
$$

where the results (23) and (26) are used. This leads to the definition of T through its inverse as

$$
T^{-1}=\left[\begin{array}{ll}
q_{1} & q_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \tag{29}\\
-1 & 3
\end{array}\right],
$$

which is guaranteed to satisfy

$$
T A T^{-1}=\left[\begin{array}{cc}
0 & 1 \tag{30}\\
-a_{0} & -a_{1}
\end{array}\right], \quad T B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

As a result, the desired values of α_{1} and α_{2} read

$$
\begin{equation*}
\alpha_{1}=-a_{0}=4, \quad \alpha_{2}=-a_{1}=3 . \tag{31}
\end{equation*}
$$

For completeness, we give T as

$$
T=\frac{1}{2}\left[\begin{array}{ll}
3 & 1 \tag{32}\\
1 & 1
\end{array}\right] .
$$

(c) To find the desired feedback, note that

$$
\begin{equation*}
\Delta_{A+B F}(s)=\Delta_{T(A+B F) T^{-1}}(s), \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
T(A+B F) T^{-1}=T A T^{-1}+T B F T^{-1} \tag{34}
\end{equation*}
$$

After denoting

$$
F T^{-1}=\left[\begin{array}{ll}
f_{0} & f_{1} \tag{35}
\end{array}\right]
$$

the result (30) gives

$$
T A T^{-1}+T B F T^{-1}=\left[\begin{array}{cc}
0 & 1 \tag{36}\\
-a_{0} & -a_{1}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[f_{0} f_{1}\right]=\left[\begin{array}{cc}
0 & 1 \\
f_{0}-a_{0} & f_{1}-a_{1}
\end{array}\right]
$$

such that

$$
\begin{equation*}
\Delta_{A+B F}(s)=s^{2}+\left(a_{1}-f_{1}\right) s+\left(a_{0}-f_{0}\right) \tag{37}
\end{equation*}
$$

As we would like to place the eigenvalues of $A+B F$ at -3 and -2 , consider the desired characteristic polynomial

$$
\begin{equation*}
p(s)=(s+3)(s+2)=s^{2}+5 s+6 \tag{38}
\end{equation*}
$$

Equating the polynomials (37) and (38) leads to

$$
\begin{align*}
& f_{0}=a_{0}-6=-4-6=-10 \tag{39}\\
& f_{1}=a_{1}-5=-3-5=-8 \tag{40}
\end{align*}
$$

after which the desired feedback matrix F can be found by solving the linear system

$$
F T^{-1}=F\left[\begin{array}{cc}
1 & -1 \tag{41}\\
-1 & 3
\end{array}\right]=\left[\begin{array}{cc}
-10 & -8
\end{array}\right]
$$

This leads to

$$
\begin{equation*}
F=[-19-9] . \tag{42}
\end{equation*}
$$

Consider the system

$$
\dot{x}(t)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{43}\\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-b & -a & -2 & -a
\end{array}\right] x(t)
$$

and denote

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{44}\\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-b & -a & -2 & -a
\end{array}\right]
$$

The system is asymptotically stable if and only if $\sigma(A) \subset \mathbb{C}_{-}$, which can equivalently checked by determining stability of the characteristic polynomial of A, i.e., Δ_{A}. As A is in so-called companion form, it immediately follows that

$$
\begin{equation*}
\Delta_{A}(s)=s^{4}+a s^{3}+2 s^{2}+a s+b . \tag{45}
\end{equation*}
$$

Stability of the polynomial Δ_{A} can be verified using the Routh-Hurwitz test, leading to the following table:

A necessary condition for stability of Δ_{A} is that all coefficients have the same sign, which implies that

$$
\begin{equation*}
a>0, \quad b>0 \tag{46}
\end{equation*}
$$

is a necessary condition.
After step 1 (note that division by a is allowed as we assume the necessary condition (46)), no new conditions are found.

However, applying the same reasoning to the polynomial $\Delta_{A}^{\prime \prime}$ obtained at step 2, we obtain

$$
\begin{equation*}
a>0, \quad 0<b<1 \tag{47}
\end{equation*}
$$

as a necessary condition for stability of $\Delta_{A}^{\prime \prime}$. However, as the polynomial $\Delta_{A}^{\prime \prime}$ is quadratic, we know that (47) is also sufficient for stability.

Hence, by the Routh-Hurwitz criterion, a necessary and sufficient condition for stability of Δ_{A} (and, hence, asymptotic stability of the linear system) is

$$
\begin{equation*}
a>0, \quad 0<b<1 . \tag{48}
\end{equation*}
$$

Consider the matrices

$$
A=\left[\begin{array}{cc}
-1 & -1 \tag{49}\\
-2 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 2
\end{array}\right]
$$

(a) As a first step in computing the matrix exponential, an eigenvalue decomposition of A will be considered. Therefore, the characteristic polynomial is computed as

$$
\Delta_{A}(s)=\operatorname{det}(s I-A)=\left|\begin{array}{rr}
s+1 & 1 \tag{50}\\
2 & s
\end{array}\right|=(s+1) s-2=s^{2}+s-2=(s+2)(s-1)
$$

such that A has the eigenvalues

$$
\begin{equation*}
\lambda_{1}=-2, \quad \lambda_{2}=1 \tag{51}
\end{equation*}
$$

The corresponding eigenvalues can be found as

$$
\begin{array}{lll}
0=\left(\lambda_{1} I-A\right) v_{1}=\left[\begin{array}{cc}
-1 & 1 \\
2 & -2
\end{array}\right] v_{1} & \Longrightarrow & v_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
0=\left(\lambda_{2} I-A\right) v_{2}=\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right] v_{2} & \Longrightarrow & v_{2}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] . \tag{53}
\end{array}
$$

After defining

$$
\Lambda=\left[\begin{array}{cc}
\lambda_{1} & 0 \tag{54}\\
0 & \lambda_{2}
\end{array}\right]=\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right], \quad T=\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right]
$$

we can write

$$
\begin{equation*}
A=T \Lambda T^{-1} \tag{55}
\end{equation*}
$$

where

$$
T^{-1}=\frac{1}{3}\left[\begin{array}{cc}
2 & 1 \tag{56}\\
1 & -1
\end{array}\right] .
$$

Now, the matrix exponential can be found as

$$
\left.\begin{array}{rl}
e^{A t}=e^{T \Lambda T^{-1} t} & =T e^{\Lambda t} T^{-1} \\
& =\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
e^{-2 t} & 0 \\
0 & e^{t}
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
2 e^{-2 t} & e^{-2 t} \\
e^{t} & -e^{t}
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{c}
2 e^{-2 t}+e^{t} \\
2 e^{-2 t}-2 e^{t}
\end{array} e^{-2 t}+e^{t}\right. \tag{57}\\
-2 e^{t}
\end{array}\right] .
$$

Next, consider the linear system

$$
\dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x(t)
$$

with $x(t) \in \mathbb{R}^{2}, u(t) \in \mathbb{R}, y(t) \in \mathbb{R}$ and the matrices A, B, C given by (49).
(b) Recall that the system is externally stable if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} C e^{A t} B=0 \tag{58}
\end{equation*}
$$

A direct computation yields

$$
\left.\begin{array}{rl}
C e^{A t} B & =\frac{1}{3}\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{c}
2 e^{-2 t}+e^{t} \\
2 e^{-2 t}-2 e^{t}
\end{array} e^{-2 t}-e^{t}\right. \\
& =\frac{1}{3}\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
3 e^{-2 t}
\end{array}\right] \\
3 e^{-2 t}
\end{array}\right] .\left[\begin{array}{l}
 \tag{59}\\
1
\end{array}\right] .
$$

It is clear that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} 3 e^{-2 t}=0 \tag{60}
\end{equation*}
$$

such that the system is externally stable.
(c) The transfer function can be found as the Laplace transform of $C e^{A t} B$ (as $D=0$), which leads to

$$
\begin{align*}
T(s)=\int_{0}^{\infty} 3 e^{-2 t} e^{-s t} \mathrm{~d} t & =3 \int_{0}^{\infty} e^{-(s+2) t} \mathrm{~d} t \\
& =-\left.\frac{3 e^{-(s+2) t}}{s+2}\right|_{0} ^{\infty} \\
& =\frac{3}{s+2}\left(1-\lim _{t \rightarrow \infty} e^{-(s+2) t}\right) \\
& =\frac{3}{s+2} \tag{61}
\end{align*}
$$

for all $s \in \mathbb{C}$ such that $\Re(s)>-2$. However, as usual, the issue of convergence will be ignored and we simply write

$$
\begin{equation*}
T(s)=\frac{3}{s+2} . \tag{62}
\end{equation*}
$$

Figure 1. Cascade interconnection of two systems
Consider two linear systems

$$
\boldsymbol{\Sigma}_{i}: \quad \dot{x}_{i}(t)=A_{i} x_{i}(t)+B_{i} u_{i}(t), \quad y_{i}(t)=C_{i} x_{i}(t)
$$

for $i \in\{1,2\}$ and their cascade interconnection given by $u_{2}(t)=y_{1}(t)$ as given in Figure 1. Then, the dynamics of the interconnection can be described as

$$
\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & 0 \\
B_{2} C_{1} & A_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right] u_{1}(t) .
$$

Assume that A_{1} and A_{2} have no eigenvalues in common (i.e., $\sigma\left(A_{1}\right) \cap \sigma\left(A_{2}\right)=\emptyset$) and that the interconnection is controllable.
(a) Denote

$$
\bar{A}=\left[\begin{array}{cc}
A_{1} & 0 \tag{63}\\
B_{2} C_{1} & A_{2}
\end{array}\right], \quad \bar{B}=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right] .
$$

We have that the pair (\bar{A}, \bar{B}) is controllable, i.e., by the Hautus test,

$$
\begin{equation*}
\operatorname{rank}[\bar{A}-\lambda I \quad \bar{B}]=n_{1}+n_{2} \tag{64}
\end{equation*}
$$

for all $\lambda \in \sigma(\bar{A})$, with n_{1} and n_{2} the state-space dimensions of systems 1 and 2 , respectively. An equivalent characterization is given by the implication

$$
\begin{equation*}
v^{\mathrm{T}}[\bar{A}-\lambda I \bar{B}]=0 \quad \Longrightarrow \quad v=0 \tag{65}
\end{equation*}
$$

for all $\lambda \in \sigma(A)$.
Now, after partitioning $v^{\mathrm{T}}=\left[\begin{array}{ll}v_{1}^{\mathrm{T}} & v_{2}^{\mathrm{T}}\end{array}\right]$ and using the definitions (63), we have

$$
\left[\begin{array}{ll}
v_{1}^{\mathrm{T}} & v_{2}^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{ccc}
A_{1}-\lambda I & 0 & B_{1} \tag{66}\\
B_{2} C_{1} & A_{2}-\lambda I & 0
\end{array}\right] \quad \Longrightarrow \quad v_{1}=0, v_{2}=0
$$

for all $\lambda \in \sigma(\bar{A})$, after which rewriting the left-hand-side leads to

$$
\begin{equation*}
\left[v_{1}^{\mathrm{T}}\left(A_{1}-\lambda I\right)+v_{2}^{\mathrm{T}} B_{2} C_{1} v_{2}^{\mathrm{T}}\left(A_{2}-\lambda I\right) v_{1}^{\mathrm{T}} B_{1}\right]=0 \quad \Longrightarrow \quad v_{1}=0, v_{2}=0 \tag{67}
\end{equation*}
$$

Now, note that due to the lower block triangular structure of \bar{A} we have that $\sigma(\bar{A})=$ $\sigma\left(A_{1}\right) \cup \sigma\left(A_{2}\right)$ and take $\lambda \in \sigma\left(A_{1}\right)$. Then, as A_{1} and A_{2} have no eigenvalues in common, $v_{2}^{\mathrm{T}}\left(A_{2}-\lambda I\right)=0$ implies that $v_{2}=0$ such that the implication (67) reduces to

$$
\begin{equation*}
\left[v_{1}^{\mathrm{T}}\left(A_{1}-\lambda I\right) 0 v_{1}^{\mathrm{T}} B_{1}\right]=0 \quad \Longrightarrow \quad v_{1}=0 \tag{68}
\end{equation*}
$$

for all $\lambda \in \sigma\left(A_{1}\right)$. This is, by the Hautus test, a necessary and sufficient condition for controllability of the pair $\left(A_{1}, B_{1}\right)$.
(b) This result can be proven similarly. Now, take $\lambda \in \sigma\left(A_{2}\right)$. In this case, $v_{1}^{\mathrm{T}}\left(A_{1}-\lambda I\right)+$ $v_{2}^{\mathrm{T}} B_{2} C_{1}=0$ implies that

$$
\begin{equation*}
v_{1}^{\mathrm{T}}=-v_{2}^{\mathrm{T}} B_{2} C_{1}\left(A_{1}-\lambda I\right)^{-1}=v_{2}^{\mathrm{T}} B_{2} C_{1}\left(\lambda I-A_{1}\right)^{-1} \tag{69}
\end{equation*}
$$

Substitution of this result in (67) leads to

$$
\begin{equation*}
\left[0 v_{2}^{\mathrm{T}}\left(A_{2}-\lambda I\right) v_{2}^{\mathrm{T}} B_{2} C_{1}\left(\lambda I-A_{1}\right)^{-1} B_{1}\right]=0 \quad \Longrightarrow \quad v_{2}=0 \tag{70}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\operatorname{rank}\left[A_{2}-\lambda I B_{2} C_{1}\left(\lambda I-A_{1}\right)^{-1} B_{1}\right]=\operatorname{rank}\left[A_{2}-\lambda I B_{2} T_{1}(\lambda)\right]=n_{2} \tag{71}
\end{equation*}
$$

