Linear systems — Resit exam (solutions)
Resit exam 20182019, Tuesday 9 July 2019, 9:00 — 12:00

Problem 1 (10 points)

To solve the initial value problem

t
i(t) + H—tzx(t) =(1+2)V1+¢2, z(0) =2, (1)
consider the differential equation in the standard form
t
i(t) = —mx(t) + (1 + 2t%)V/1 + 2. (2)
Then, a direct computation gives
0 (N VNS Ny (N S R § N TP I W R (3)
1+1¢2 2) 1+u 2 2 ’

where the substitution u = ¢2 is used. After simplifying the result as
1
F(t)=—-3ln[1+#]=-1m1+#)=—In <(1 +t2)2> =—InV1+12 (4)

the integrating factor reads

e FO) — VT _ /112, (5)

Now, we have that

VT B} = VITE o) + Ssalt)

el CORS)
= (14 12)(1 + 22) = 1+ 36> + 2t (6)

where the latter result follows from the substitution of the dynamics (2). By direct integration,
we obtain

\/1+t2x(t):/1+3t2+2t4dt:t+t3+§t5+0 (7)

for some constant C, such that the general solution of (2) reads

i+ + 23+ C

x(t) NiE (8)
For ¢ = 0, this gives
z(0) = C, (9)
such that the initial condition (1) leads to
C=2 (10)



Problem 2 (4 + 8 = 12 points)

Consider the nonlinear system

(a)

E1(t) = 21 (t) — 21 (t)a2(t),
do(t) = —a3(t) + u(t).

We will compute the equilibrium point = [Z; Z2]T for 4 = 1. This requires solving the
set of equations

0= — 2170, (11)
0=-7}+u (12)
for w = 1. From (12), we immediately obtain (recall that only real solutions are considered)

7 =1, (13)
as the unique solutions. Then, the substitution of (13) in (11) leads to 0 = 1 — Z5, such that
Ty =1, (14)

is the unique solution. Hence, the unique equilibrium corresponding to u = 1 reads & =
[11]7T.

Before computing the linearized system, introduce the notation

z= Bj fla,u) = [”ﬁ;ﬁﬂ (15)
Now, define the perturbations from the equilibrium as
T=x-1I, i =u—1u, (16)
such that we have
i=f(z+7u+a). (17)

This leads to the linearized dynamics (by the Taylor expansion)

I = %(;ﬁ,ﬁ)i - g—i(i,ﬂ)ﬁ. (18)

Then, computation of the Jacobian of f with respect to x gives

0 _ 1-— To —Xq
s =[5 5] (1)
leading to
of ,_ . |0 -1
o (20)
Similarly, we obtain
of

- 0
au(a:,u)— [1} . (21)
Finally, the substitution of the results (20) and (21) in (18) gives

H(t) = [_03 ‘01] #t) + m ). (22)



Problem 3 (4 + 10 + 6 = 20 points)

Consider the linear system

#(t) = Ax(t) + Bu(t),

with state z(¢) € R?, input u(t) € R, and where

(a)

a=lmwl B=F]

A direct computation leads to

-1 -2
(5a5] =] @)
from which one can conclude that
rank [ B AB | = 2. (24)

Hence, the system is controllable.

As a first step in finding the matrix T, compute

AA()\):det()\I—A):‘/\+7 3 ‘

—22 A—10
=A+7)A=10)4+66 =X —3X—T70+66 =\ =3\ —4. (25)

Define
a; = 73, apg = 74, (26)
such that Ax(s) = s + ais + ao.
Next, define the vectors
T (27)
q2 - - 3 9
-2 -1 1
weanian= [ 2] a7 [1] -

where the results (23) and (26) are used. This leads to the definition of T' through its inverse
as

-1 1 -1
which is guaranteed to satisfy
TAT‘lz[ 0 1 } TB:[O]. (30)
—ag —ap 1

As a result, the desired values of a; and as read
Q1 = —ag = 4, Qo = —a1 = 3. (31)

For completeness, we give T' as



(¢) To find the desired feedback, note that

AayBr(s) = Apasrpryr-1(5), (33)
and
T(A+ BF)T ' =TAT '+ TBFT'. (34)
After denoting
FT'=[fo 1], (35)
the result (30) gives
TAT '+ TBFT' = [(210 ZJ + {ﬂ [ fo ] = {fo an fi ial] , (36)

such that
Aaypr(s) = s>+ (a1 — f1)s + (a0 — fo). (37)

As we would like to place the eigenvalues of A + BF at —3 and —2, consider the desired
characteristic polynomial

p(s) = (s+3)(s+2) = s>+ 55 +6. (38)
Equating the polynomials (37) and (38) leads to

fo=ao—6=—4—6=-10, (39)
fi=a1—-5=-3-5=-8, (40)

after which the desired feedback matrix F' can be found by solving the linear system

FTl—F{ ! _1}—[—10 -8]. (41)

-1 3
This leads to

F=[-19 -9]. (42)



Problem 4 (14 points)

Consider the system

0 1 0 O
0 0 1 0
i0=| 0 o o 3|0 (43)
—-b —a —2 —a
and denote
0 1 0 0
0 0 1 0
4= 0 0 0 1 (44)
—b—-a -2 —a

The system is asymptotically stable if and only if o(A) C C_, which can equivalently checked by
determining stability of the characteristic polynomial of A, i.e., A 4. As A is in so-called companion
form, it immediately follows that

Ay(s) = s* +as® +2s> +as +b. (45)

Stability of the polynomial A4 can be verified using the Routh-Hurwitz test, leading to the
following table:

st 53 52 st s?
ax 1 a 2 a b Ay
1x a a
a® a a® ab result of step 1
1x a 1 a b after division by a: A/,
ax 1 b

1 a(l —b) b result of step 2: A}

A necessary condition for stability of A, is that all coefficients have the same sign, which
implies that

a>0, b>0 (46)

is a necessary condition.

After step 1 (note that division by a is allowed as we assume the necessary condition (46)), no
new conditions are found.

However, applying the same reasoning to the polynomial A’} obtained at step 2, we obtain

a>0, 0<b<1 (47)

as a necessary condition for stability of A’j. However, as the polynomial A’} is quadratic, we know
that (47) is also sufficient for stability.

Hence, by the Routh-Hurwitz criterion, a necessary and sufficient condition for stability of A 4
(and, hence, asymptotic stability of the linear system) is

a >0, 0<b< 1. (48)



Problem 5 (8 +4 + 4 = 16 points)

Consider the matrices

A{:;_ﬂ, B[”, c=[12]. (49)

(a) As a first step in computing the matrix exponential, an eigenvalue decomposition of A will
be considered. Therefore, the characteristic polynomial is computed as

s+11

A(s) =det(s] — A) = 9 S’:(S+1)8—2282+8—2:(S+2)(S—1) (50)

such that A has the eigenvalues
A= —2, Az =1 (51)

The corresponding eigenvalues can be found as

O:()q]—A)vl:{_; _12%1 = vlzm, (52)
o:(AQI—Am:B”uQ — UQ:[_IQ] (53)

After defining

A0 _[-20 _ |11
A‘[o AJ_[O 1}’ T_[””’Q]_LQ]’ (54)
we can write
A=TATH, (55)
where
12 1
-1 _ -
mot2] -

Now, the matrix exponential can be found as

—1
eAt — BTAT t__ TeAtTfl

11 1) e*o0]f2 1
T3t -2]| 0 |11
111 2072 o2
T 3[1-2 et —et
1 22 4ot o2t _ gt
- § -267215 _ 26t ef2t + 2€t . (57)
Next, consider the linear system
x(t) = Ax(t) + Bu(t), y(t) = Cx(t),
with z(t) € R?, u(t) € R, y(t) € R and the matrices A, B, C given by (49).
(b) Recall that the system is externally stable if

lim Ce*B = 0. (58)
t—o0



A direct computation yields
2672t + et 6721‘/ _ et 1
Atp _
Cel'B=312] {26_%—2& e 42| |1
367%
[12) 3]

e 2. (59)

W= W

w

It is clear that

lim 3e™% =0, (60)

t—o0
such that the system is externally stable.

(c) The transfer function can be found as the Laplace transform of Ce4*B (as D = 0), which
leads to

T(S)Z/ 3e—2te—8tdt=3/ et gy
0 0

36—(s+2)t o
B s+2 |,
3 o (s42)t
= (1 — lim e™¢ )
s+ 2 t—oo
3
T st2 (61)

for all s € C such that R(s) > —2. However, as usual, the issue of convergence will be
ignored and we simply write

T(s) = . (62)




Problem 6 (8 + 10 = 18 points)

Y1 = u2
Uy —> 3 > I — Y2

Figure 1. Cascade interconnection of two systems

Consider two linear systems

for ¢ € {1,2} and their cascade interconnection given by us(t) = y1(t) as given in Figure 1. Then,
the dynamics of the interconnection can be described as

xl(t) o A1 0 xl(t) Bl
[i‘g(t):| = [BQC1 Ao | 2ot | T 0 |0 ®
Assume that A; and As have no eigenvalues in common (i.e., 0(41) N o(As) = 0) and that the
interconnection is controllable.

(a) Denote
T A1 0 5 Bl
il o] a[m]. "
We have that the pair (A, B) is controllable, i.e., by the Hautus test,
rank [A — A B| =ny + no, (64)

for all A € o(A), with ny and ny the state-space dimensions of systems 1 and 2, respectively.
An equivalent characterization is given by the implication

v [A=X B]=0 = v=0 (65)
for all A € o(A).
T T

Now, after partitioning v = [vT vJ ] and using the definitions (63), we have

[vf v ByCi Ay — A 0 = v1=0,v=0 (66)

for all A € o(A), after which rewriting the left-hand-side leads to
[vf (A1 — AI) + v3 BoCy v3 (A — M) vf B | =0 = v =0,v2=0. (67)
Now, note that due to the lower block triangular structure of A we have that o(A4) =

0(A1) Uo(Az) and take A € 0(Ay). Then, as A; and A have no eigenvalues in common,
vy (Ag — M) = 0 implies that vy = 0 such that the implication (67) reduces to

[v] (A1 —AI) 0 v By | =0 = v; =0 (68)

for all A € o(Ay). This is, by the Hautus test, a necessary and sufficient condition for
controllability of the pair (A;, By).

(b) This result can be proven similarly. Now, take A € o(Az). In this case, vf (A — AI) +
v BoCy = 0 implies that

vi = —vF BoCr(Ay — M)t = vl BoCy (M — Ap) 7L (69)
Substitution of this result in (67) leads to
[0 v (A2 = M) vy BoCy(M — Ay)™'By1 ] =0 = vy =0, (70)
which implies that
rank [Ag — M ByCi(M — Al)_lBl] = rank [Ag -\ Bng()\)] = ns. (71)



