
Linear systems – Resit exam (solutions)
Resit exam 2018–2019, Tuesday 9 July 2019, 9:00 – 12:00

Problem 1 (10 points)

To solve the initial value problem

ẋ(t) +
t

1 + t2
x(t) = (1 + 2t2)

√
1 + t2, x(0) = 2, (1)

consider the differential equation in the standard form

ẋ(t) = − t

1 + t2
x(t) + (1 + 2t2)

√
1 + t2. (2)

Then, a direct computation gives

F (t) = −
∫

t

1 + t2
dt = − 1

2

∫
1

1 + u
du = − 1

2 ln |1 + u| = − 1
2 ln |1 + t2|, (3)

where the substitution u = t2 is used. After simplifying the result as

F (t) = − 1
2 ln |1 + t2| = − 1

2 ln(1 + t2) = − ln

(
(1 + t2)

1
2

)
= − ln

√
1 + t2, (4)

the integrating factor reads

e−F (t) = eln
√

1+t2 =
√

1 + t2. (5)

Now, we have that

d

dt

{√
1 + t2 x(t)

}
=
√

1 + t2 ẋ(t) +
t√

1 + t2
x(t)

=
√

1 + t2
(
ẋ(t) +

t

1 + t2
x(t)

)
= (1 + t2)(1 + 2t2) = 1 + 3t2 + 2t4, (6)

where the latter result follows from the substitution of the dynamics (2). By direct integration,
we obtain √

1 + t2 x(t) =

∫
1 + 3t2 + 2t4 dt = t+ t3 + 2

5 t
5 + C (7)

for some constant C, such that the general solution of (2) reads

x(t) =
t+ t3 + 2

5 t
5 + C

√
1 + t2

. (8)

For t = 0, this gives

x(0) = C, (9)

such that the initial condition (1) leads to

C = 2. (10)
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Problem 2 (4 + 8 = 12 points)

Consider the nonlinear system

ẋ1(t) = x1(t)− x1(t)x2(t),

ẋ2(t) = −x3
1(t) + u(t).

(a) We will compute the equilibrium point x̄ = [ x̄1 x̄2 ]T for ū = 1. This requires solving the
set of equations

0 = x̄1 − x̄1x̄2, (11)

0 = −x̄3
1 + ū (12)

for ū = 1. From (12), we immediately obtain (recall that only real solutions are considered)

x̄1 = 1, (13)

as the unique solutions. Then, the substitution of (13) in (11) leads to 0 = 1− x̄2, such that

x̄2 = 1, (14)

is the unique solution. Hence, the unique equilibrium corresponding to ū = 1 reads x̄ =
[ 1 1 ]T.

(b) Before computing the linearized system, introduce the notation

x =

[
x1

x2

]
, f(x, u) =

[
x1 − x1x2

−x3
1 + u

]
. (15)

Now, define the perturbations from the equilibrium as

x̃ = x− x̄, ũ = u− ū, (16)

such that we have

˙̃x = f(x̄+ x̃, ū+ ũ). (17)

This leads to the linearized dynamics (by the Taylor expansion)

˙̃x =
∂f

∂x
(x̄, ū)x̃+

∂f

∂u
(x̄, ū)ũ. (18)

Then, computation of the Jacobian of f with respect to x gives

∂f

∂x
(x, u) =

[
1− x2 −x1

−3x2
1 0

]
, (19)

leading to

∂f

∂x
(x̄, ū) =

[
0 −1
−3 0

]
. (20)

Similarly, we obtain

∂f

∂u
(x̄, ū) =

[
0
1

]
. (21)

Finally, the substitution of the results (20) and (21) in (18) gives

˙̃x(t) =

[
0 −1
−3 0

]
x̃(t) +

[
0
1

]
ũ(t). (22)
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Problem 3 (4 + 10 + 6 = 20 points)

Consider the linear system

ẋ(t) = Ax(t) +Bu(t),

with state x(t) ∈ R2, input u(t) ∈ R, and where

A =

[
−7 −3
22 10

]
, B =

[
−1
3

]
.

(a) A direct computation leads to

[
B AB

]
=

[
−1 −2
3 8

]
(23)

from which one can conclude that

rank
[
B AB

]
= 2. (24)

Hence, the system is controllable.

(b) As a first step in finding the matrix T , compute

∆A(λ) = det(λI −A) =

∣∣∣∣ λ+ 7 3
−22 λ− 10

∣∣∣∣
= (λ+ 7)(λ− 10) + 66 = λ2 − 3λ− 70 + 66 = λ2 − 3λ− 4. (25)

Define

a1 = −3, a0 = −4, (26)

such that ∆A(s) = s2 + a1s+ a0.

Next, define the vectors

q2 = B =

[
−1
3

]
, (27)

q1 = AB + a1B =

[
−2
8

]
+ (−3)

[
−1
3

]
=

[
1
−1

]
, (28)

where the results (23) and (26) are used. This leads to the definition of T through its inverse
as

T−1 =
[
q1 q2

]
=

[
1 −1
−1 3

]
, (29)

which is guaranteed to satisfy

TAT−1 =

[
0 1
−a0 −a1

]
, TB =

[
0
1

]
. (30)

As a result, the desired values of α1 and α2 read

α1 = −a0 = 4, α2 = −a1 = 3. (31)

For completeness, we give T as

T =
1

2

[
3 1
1 1

]
. (32)
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(c) To find the desired feedback, note that

∆A+BF (s) = ∆T (A+BF )T−1(s), (33)

and

T (A+BF )T−1 = TAT−1 + TBFT−1. (34)

After denoting

FT−1 =
[
f0 f1

]
, (35)

the result (30) gives

TAT−1 + TBFT−1 =

[
0 1
−a0 −a1

]
+

[
0
1

] [
f0 f1

]
=

[
0 1

f0 − a0 f1 − a1

]
, (36)

such that

∆A+BF (s) = s2 + (a1 − f1)s+ (a0 − f0). (37)

As we would like to place the eigenvalues of A + BF at −3 and −2, consider the desired
characteristic polynomial

p(s) = (s+ 3)(s+ 2) = s2 + 5s+ 6. (38)

Equating the polynomials (37) and (38) leads to

f0 = a0 − 6 = −4− 6 = −10, (39)

f1 = a1 − 5 = −3− 5 = −8, (40)

after which the desired feedback matrix F can be found by solving the linear system

FT−1 = F

[
1 −1
−1 3

]
=
[
−10 −8

]
. (41)

This leads to

F =
[
−19 −9

]
. (42)
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Problem 4 (14 points)

Consider the system

ẋ(t) =


0 1 0 0
0 0 1 0
0 0 0 1
−b −a −2 −a

x(t) (43)

and denote

A =


0 1 0 0
0 0 1 0
0 0 0 1
−b −a −2 −a

 . (44)

The system is asymptotically stable if and only if σ(A) ⊂ C−, which can equivalently checked by
determining stability of the characteristic polynomial of A, i.e., ∆A. As A is in so-called companion
form, it immediately follows that

∆A(s) = s4 + as3 + 2s2 + as+ b. (45)

Stability of the polynomial ∆A can be verified using the Routh-Hurwitz test, leading to the
following table:

s4 s3 s2 s1 s0

a× 1 a 2 a b ∆A

1× a a
a2 a a2 ab result of step 1

1× a 1 a b after division by a: ∆′A
a× 1 b

1 a(1− b) b result of step 2: ∆′′A

A necessary condition for stability of ∆A is that all coefficients have the same sign, which
implies that

a > 0, b > 0 (46)

is a necessary condition.
After step 1 (note that division by a is allowed as we assume the necessary condition (46)), no

new conditions are found.
However, applying the same reasoning to the polynomial ∆′′A obtained at step 2, we obtain

a > 0, 0 < b < 1 (47)

as a necessary condition for stability of ∆′′A. However, as the polynomial ∆′′A is quadratic, we know
that (47) is also sufficient for stability.

Hence, by the Routh-Hurwitz criterion, a necessary and sufficient condition for stability of ∆A

(and, hence, asymptotic stability of the linear system) is

a > 0, 0 < b < 1. (48)
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Problem 5 (8 + 4 + 4 = 16 points)

Consider the matrices

A =

[
−1 −1
−2 0

]
, B =

[
1
1

]
, C =

[
1 2

]
. (49)

(a) As a first step in computing the matrix exponential, an eigenvalue decomposition of A will
be considered. Therefore, the characteristic polynomial is computed as

∆A(s) = det(sI −A) =

∣∣∣∣ s+ 1 1
2 s

∣∣∣∣ = (s+ 1)s− 2 = s2 + s− 2 = (s+ 2)(s− 1) (50)

such that A has the eigenvalues

λ1 = −2, λ2 = 1. (51)

The corresponding eigenvalues can be found as

0 = (λ1I −A)v1 =

[
−1 1
2 −2

]
v1 =⇒ v1 =

[
1
1

]
, (52)

0 = (λ2I −A)v2 =

[
2 1
2 1

]
v2 =⇒ v2 =

[
1
−2

]
. (53)

After defining

Λ =

[
λ1 0
0 λ2

]
=

[
−2 0
0 1

]
, T =

[
v1 v2

]
=

[
1 1
1 −2

]
, (54)

we can write

A = TΛT−1, (55)

where

T−1 =
1

3

[
2 1
1 −1

]
. (56)

Now, the matrix exponential can be found as

eAt = eTΛT−1t = TeΛtT−1

=
1

3

[
1 1
1 −2

] [
e−2t 0

0 et

] [
2 1
1 −1

]
=

1

3

[
1 1
1 −2

] [
2e−2t e−2t

et −et
]

=
1

3

[
2e−2t + et e−2t − et
2e−2t − 2et e−2t + 2et

]
. (57)

Next, consider the linear system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t),

with x(t) ∈ R2, u(t) ∈ R, y(t) ∈ R and the matrices A, B, C given by (49).

(b) Recall that the system is externally stable if

lim
t→∞

CeAtB = 0. (58)
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A direct computation yields

CeAtB =
1

3

[
1 2

] [ 2e−2t + et e−2t − et
2e−2t − 2et e−2t + 2et

] [
1
1

]
=

1

3

[
1 2

] [ 3e−2t

3e−2t

]
= 3e−2t. (59)

It is clear that

lim
t→∞

3e−2t = 0, (60)

such that the system is externally stable.

(c) The transfer function can be found as the Laplace transform of CeAtB (as D = 0), which
leads to

T (s) =

∫ ∞
0

3e−2te−st dt = 3

∫ ∞
0

e−(s+2)t dt

= −3e−(s+2)t

s+ 2

∣∣∣∣∞
0

=
3

s+ 2

(
1− lim

t→∞
e−(s+2)t

)
=

3

s+ 2
(61)

for all s ∈ C such that <(s) > −2. However, as usual, the issue of convergence will be
ignored and we simply write

T (s) =
3

s+ 2
. (62)
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Problem 6 (8 + 10 = 18 points)

Σ1 Σ2u1 y2
y1 = u2

Figure 1. Cascade interconnection of two systems

Consider two linear systems

Σi : ẋi(t) = Aixi(t) +Biui(t), yi(t) = Cixi(t)

for i ∈ {1, 2} and their cascade interconnection given by u2(t) = y1(t) as given in Figure 1. Then,
the dynamics of the interconnection can be described as[

ẋ1(t)
ẋ2(t)

]
=

[
A1 0
B2C1 A2

] [
x1(t)
x2(t)

]
+

[
B1

0

]
u1(t).

Assume that A1 and A2 have no eigenvalues in common (i.e., σ(A1) ∩ σ(A2) = ∅) and that the
interconnection is controllable.

(a) Denote

Ā =

[
A1 0
B2C1 A2

]
, B̄ =

[
B1

0

]
. (63)

We have that the pair (Ā, B̄) is controllable, i.e., by the Hautus test,

rank
[
Ā− λI B̄

]
= n1 + n2, (64)

for all λ ∈ σ(Ā), with n1 and n2 the state-space dimensions of systems 1 and 2, respectively.
An equivalent characterization is given by the implication

vT
[
Ā− λI B̄

]
= 0 =⇒ v = 0 (65)

for all λ ∈ σ(A).

Now, after partitioning vT = [ vT
1 vT

2 ] and using the definitions (63), we have

[ vT
1 vT

2 ]

[
A1 − λI 0 B1

B2C1 A2 − λI 0

]
=⇒ v1 = 0, v2 = 0 (66)

for all λ ∈ σ(Ā), after which rewriting the left-hand-side leads to[
vT

1 (A1 − λI) + vT
2 B2C1 v

T
2 (A2 − λI) vT

1 B1

]
= 0 =⇒ v1 = 0, v2 = 0. (67)

Now, note that due to the lower block triangular structure of Ā we have that σ(Ā) =
σ(A1) ∪ σ(A2) and take λ ∈ σ(A1). Then, as A1 and A2 have no eigenvalues in common,
vT

2 (A2 − λI) = 0 implies that v2 = 0 such that the implication (67) reduces to[
vT

1 (A1 − λI) 0 vT
1 B1

]
= 0 =⇒ v1 = 0 (68)

for all λ ∈ σ(A1). This is, by the Hautus test, a necessary and sufficient condition for
controllability of the pair (A1, B1).

(b) This result can be proven similarly. Now, take λ ∈ σ(A2). In this case, vT
1 (A1 − λI) +

vT
2 B2C1 = 0 implies that

vT
1 = −vT

2 B2C1(A1 − λI)−1 = vT
2 B2C1(λI −A1)−1. (69)

Substitution of this result in (67) leads to[
0 vT

2 (A2 − λI) vT
2 B2C1(λI −A1)−1B1

]
= 0 =⇒ v2 = 0, (70)

which implies that

rank
[
A2 − λI B2C1(λI −A1)−1B1

]
= rank

[
A2 − λI B2T1(λ)

]
= n2. (71)
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